Panagiotis Stefanides |
---|
CLASSICAL PROBLEMS et alii with web Links |
By:Eur Ing Panagiotis Stefanides CEng MIET http://www.stefanides.gr panamars@otenet.gr
1. Tracing ARCHIMEDES Method Of Polygons for “CIRCLE MEASUREMENT” 2. The Delian DOUBLING of the CUBE 3. A Non Linear Trigonometric IDENTIRY 4. A Non Linear Trigonometric EXPRESSION for P i 5. A Non Linear Expression of THREE NUMBERS in a ROW 6. TRISECTION of an Angle ITERATIVELY
1 Tracing ARCHIMEDES Method Of Polygons for “CIRCLE MEASUREMENT”By:Eur Ing Panagiotis Stefanides CEng MIET © Copyright Panagiotis C. Stefanides.
y(n+1)=0.5SQRT[A^2+B^2] , A=y(n) ,B=[A^2]/C C=SQRT[R^2-A^2] +R , R=RADIUS OF CIRCLE=2 units THETA[R]rad =2[THETA(0)]Pi/180[2^n] ,THETA(0)=30 2y(0)=2 units ,corresponds to one of the six sides of a regular HEXAGON inscribed in the CIRCLE of radius 2 units, The arc of which subtends 60 deg ,at the center of theCIRCLE. y(0)=1 y(1)=0.517638090205041524697797675248097 y(2)=0.261052384440103183096812455790978 y(3)=0.130806258460286133630631117550351 y(4)=0.0654381656435522841273198526345763 y(5)=0.0327234632529735632859438469683461 y(6)=0.016362279207874258570398246589218 y(7)=0.00818120805246957918924210834302384 y(8)=0.00409061258232819022882611784626426 y(9)=0.00204530736067660908238592229206388 y(10)=0.00102265381402739500247163869946902 y(11)=5.11326923724832989668067056305212e-4 y(12)=0.0002556634639513086612958129429003 y(13)=1.27831732236765852255655919873982e-4 y(14)=6.39158661510218663537974854526572e-5 y(15)=3.19579330795908007059262098055451e-5 y(16)=1.59789665403053837941159531748569e-5 y(17)= 7.98948327017683312504301824151782e-6 y(18)= 3.99474163509638505378952308041447e-6 y(19)= 1.99737081754918858830326403024717e-6 y(20)= 9.98685408774718801827694849662372e-7 2THETA30/[180(2^n)]= For n 0 = 0.333333333333333333333333333333333 “ 1=0.166666666666666666666666666666667 “ 2=0.0833333333333333333333333333333333 “ 3= 0.0416666666666666666666666666666667 “ 4= 0.0208333333333333333333333333333333 “ 5= 0.0104166666666666666666666666666667 “ 6= 0.00520833333333333333333333333333333 “ 7= 0.00260416666666666666666666666666667 “ 8= 0.00130208333333333333333333333333333 “ 9= 6.51041666666666666666666666666667e-4 “ 10=3.25520833333333333333333333333333e-4 “ 11=1.62760416666666666666666666666667e-4 “ 12=8.13802083333333333333333333333333e-5 “ 13=4.06901041666666666666666666666667e-5 “ 14=2.03450520833333333333333333333333e-5 “ 15=1.01725260416666666666666666666667e-5 “ 16=5.08626302083333333333333333333333e-6 “ 17=2.5431315104166666666666666666665e-6 “ 18=1.27156575520833333333333333333325e-6 “ 19=6.357828776041666666666666666665e-7 “ 20=3.1789143880208333333333333333325e-7
y(16)/( 2th30/[180(2^16)] ) = 3.14159265355636089699354932180887 y(17)/( 2th30/[180.(2^17)] ) = 3.14159265356585361409691546085749 y(18)/( 2th30/[180.(2^18)] ) = 3.14159265357212029062180221517697 y(19)/( 2th30/[180.(2^19)] ) = 3.14159265357368695975302507567124 y(20)/( 2th30/[180.(2^20] ) = 3.14159265357407862703583086403904
[ BACK CHECKING CIRCLE RADIUS FOR ACCURACY OF COMPUTER CALCULATIONS:
h(19)=9.9737254569952718968759340441557e-13 h(19)^2=9.9475199491515545244016386648656e-25 y(19)=9.9475199491515545244016386648656e-25 y(19)^2=3.9894901827971140079143423452449e-12 y(19)^2+h(19)^2=3.9894901827971140079143423452449e-12 y(19)^2+h(19)^2/2h(19)=2.00000000000000000058096940421553 =R=Radius of Circle Actual R=2 ]
© Copyright Panagiotis C. Stefanides
Links
http://mathforum.org/kb/thread.jspa?forumID=13&threadID=87711&messageID=429947#429947 e j pi http://mathforum.org/kb/thread.jspa?forumID=13&threadID=43562&messageID=548825#548825 http://mathforum.org/kb/message.jspa?messageID=314852&tstart=0
2 The Delian DOUBLING of the CUBE
By:Eur Ing Panagiotis Stefanides CEng MIET © Copyright Panagiotis C. Stefanides
Let 1] SIGMA = SUM 2] X=SIGMA{([2M] ^n )/n!}for n=0 to infinity the SIGMA limits 3] M=SIGMA{(1/[2N-1])*[K]^2N } , for K=1/3 ,and for N =1 to infinity the SIGMA limits
a) Find M [summing the first nine terms ] . M= [1/1]*[K^2] + + [1/3]*[K^4 } + + [1/5]*[K^6] + + [1/7]*[K^8 ] + + [1/9]*[K^10 ] + + [1/11]*[K^12] + + [1/13]*[K^14] + + [1/15]*[K^16] + + [1/17]*[K^18 ] + M=0.11552453.. , 2M=0.23104906..
Find X [summing the first nine terms ] X= [1/0!]* [2M]^0 + + [1/1!]*[2M]^1 + + [1/2!]*[2M]^2 + + [1/3!]*[2M]^3 + + [1/4!]*[2M]^4 + + [1/5!]*[2M]^5 + + [1/6!]*[2M]^6 + + [1/7!]*[2M]^7 + + [1/8!]*[2M]^8 + X = 1.25992105.. [1.25992105..]^3 = 2 X = CUBIC ROOT OF 2 Using X as the side of a CUBE ,its VOLUME X^3 =2 is DOUBLE in volume of the CUBE whose side has length of UNITY and volume 1*1*1=1 , i.e. we have a solution to the DELIAN PROBLEM of DOUBLING OF THE CUBE.
© Copyright Panagiotis C. Stefanides
Links
http://mathforum.org/kb/thread.jspa?forumID=130&threadID=357981&messageID=1094568#1094568
3 A Non Linear Trigonometric IDENTITYBy :Eur Ing Panagiotis Stefanides CEng MIET © Copyright Panagiotis C. Stefanides
SQRT[X] =Tan{ArcCos[SQRT(1/ [ (1/B)+1] ) ] }
Where,
B=[1/D^2]-1
D = Sin{ArcTan[SQRT(X)] } [SQRT=SQUARE ROOT ]
[For X positive real number ] EXAMPLE: X=365.6 , D = 0.998635184.., B = 0.00273523… SQRT365.6=19.1206693.. = Tan{ArcCos[SQRT(1/ [ (1/B)+1] ) ] } Tan{ArcCos[SQRT(1/ [ (1/0.00273523…)+1] ) ] }=19.1206693..
© Copyright Panagiotis C. Stefanides
Links
http://mathforum.org/kb/thread.jspa?forumID=13&threadID=111770&messageID=576366#576366
4 A Non Linear Trigonometric EXPRESSION for P i .By:Eur Ing Panagiotis Stefanides CEng MIET © Copyright Panagiotis C. Stefanides
For any positive real number X:
Pi= 4*ArcTanX + 2*ArcTan[(1-X^2)/2X] , Working in Radians , or ,
180= 4*ArcTanX + 2*ArcTan[(1-X^2)/2X] ,Working in Degrees ].
EXAMPLE: X=365.6 , [Working in Degrees] 4*ArcTan[365.6] + 2*ArcTan[(1-[365.6] ^2)/2[365.6]] = 180 X=365.6 , [Working in Radians] 4*ArcTan[365.6] + 2*ArcTan[(1-[365.6] ^2)/2[365.6]]=3.141592654.. =Pi = 3.141592654..
© Copyright Panagiotis C. Stefanides
Links
http://mathforum.org/kb/thread.jspa?forumID=13&threadID=1085185&messageID=3400097#3400097 The Square Root of the Golden Section By an Iterative Method. http://mathforum.org/kb/thread.jspa?forumID=13&threadID=101817&messageID=516846#516846
5 A Non Linear Expression of THREE NUMBERS in a ROWBy:Eur Ing Panagiotis Stefanides CEng MIET © Copyright Panagiotis C. Stefanides
(n+1)tan[arctan(n)-arctan(1)]=(n-1) This NON LINEAR expression is of inerest , as it relates 3 numbers (n+1),n,(n-1)] in row,differing by unity. The geometric proof of : (n+1)tan[arctan(n)-arctan(1)]=(n-1) , requires proving,that: angle[arctan(n)-arctan(1)]=angle{arctan[(n-1)/(n+1)]} The values for n, may be positive,negative integers, or fractions,e.g. 3tan[arctan(2)-45deg]=1 4tan[arctan(3)-45deg]=2 .... Geometric proof that: arctan(n)-arctan(1)=arctan[(n-1)/(n+1)] 1.Draw X,Y, axes,with origon 0. 2.With center o,draw 3 concentric circles: a).The radius of the first circle is unity(1),crossing the X-axis, say,at E,and the Y-axis,say,at F. b).The radius of the second is n(representing a number on the Xand Y-axis),crossing the X-axis,say at B,and the Y-axis,say, at A(make it greater than the first circle ,for drawing clarity) c).The radius of the third circle exceeds n, by unity(n+1),crossing X=axis, at D and Y-axis at C. 3.Draw another circle,with center A , and radius unity(1),crossing the Y-axis at G and point C. 4.Join DC,DG,AE and EF. 5.Draw a perpendicular from G to DC, crossing DC at H. Angle CDO=angle DCO=45deg=angle FEO= angle EFO , (DC is parallel with EF). Call angle GDO=P, and angle AEF=R, Angle HDG=(45-P), angle AEO=(45+R),and angle EAO=90- (45+R)=(45-R) OA=n , OC=n+1 , OF=1 , OG=n-1 OB=n , OD=n+1 , OE=1 *Triangle CHG:Angle HCG=45deg=angle HGC. Since GA=AC=1, GC=2, thus : HC=HG=SQRT(2) [i.e. point H on circle center A ] *Triangle HDG: Since angle HDG=(45-P), then, angle HGD=90-(45-P)= =(45+P). DC=SQRT[OD^2+OC^2]= SQRT[2*(n+1)^2]=(n+1)SQRT(2). DH=DC-HC=(n+1)SQRT(2)-SQRT(2)=n*SQRT(2) . Ratio : HG/DH=SQRT(2)/n*SQRT(2)=1/n=tan(45-P) . *Triangle AEO : Angle EAO=90-(45+R)=(45-R) . Ratio : EO/OA=1/n=tan(45-R), thus : 1/n=tan(45-P)=1/n=tan(45-R), i.e. angle R= angle P. Since ratio:OG/OD=(n-1)/(n+1)=tan(P) , or arctan[(n-1)/(n+1)]=P, and ,ratio:OA/OE=n/1=tan(45+R)=n, or arctan(n)=(45+R), R=[arctan(n)-45], then since R=P : [arctan(n)-45]=arctan[(n-1)/(n+1)] or, (n+1)tan[arctan(n)-arctan(1)]=(n-1). EXAMPLE: n = 365.6 , 366.6tan[ 89.84328327 – 45 ] =364.6
© Copyright Panagiotis C. Stefanides
Links
http://mathforum.org/kb/thread.jspa?forumID=13&threadID=70265&messageID=307651#307651 http://mathforum.org/kb/message.jspa?messageID=307652&tstart=0 http://mathforum.org/kb/message.jspa?messageID=307653&tstart=0 http://mathforum.org/kb/thread.jspa?forumID=130&threadID=357422&messageID=1093401#1093401 http://mathforum.org/kb/thread.jspa?forumID=130&threadID=357422&messageID=1093400#1093400
6 TRISECTION of an Angle ITERATIVELY ****By:Eur Ing Panagiotis Stefanides CEng MIET © Copyright Panagiotis C. Stefanides
VALUE OF SIN[THETA/3] : SIN[THETA/ 3]=( SIN[THETA] )/ [3-4K^2] WHERE K =( SIN[ THETA ] )/ L WHERE L=3-4M^2 WHERE M=( SIN[ THETA ] )/ N WHERE N=3-4P^2 WHERE P=SIN[THETA]
ETC. ETC.
The algorithm is an iterative formula and works for values : 0 DEG < THETA < 45DEG The compass and ruler is also an approximate solution making use the formula: [SIN[THETA]]^2 =[1-COS(2THETA)]/2
For THETA=45 DEG ,SUBTRACT A 30 DEG ANGLE , OR BISECT 30 DEG ANGLE , as constructable for a 30 DEG - 60 DEG Ortogonal Triangle.
For greater angles one manipulates them accordingly , making use of the 45 DEG OR OTHER SMALLER THAN 45 DEG TRISECTIONS.
EXAMPLE FOR THETA = 30 DEG : SIN[THETA]=0.5 SIN[30]=0.5
{SIN[30]}^2=0.25
1 3-4{SIN[30]}^2=2 2 (SIN[30])/2=0.25 3 (0.25)^2=0.0625 4 3-4(0.0625) = 2.75 5 (SIN[30])/2.75=0.181818182 .. 6 (0.181818182.. )^2=0.033057851.. 7 3-4(0.033057851..)=2.867768595..) 8 (SIN[30])/ 2.867768595..=0.174351585.. 9 (0.174351585..)^2=0.030398475.. 10 3-4(0.030398475..)=2.878406099.. 11 (SIN[30])/ 2.878406099..=0.173707247.. 12 (0.173707247..)^2 =0.030174208.. 13 3-4(0.030174208..)= 2.879303169.. 14 (SIN[30])/ 2.879303169..=0.173653127.. 15 (0.173653127.. )^2 =0.030155409.. 16 3-4(0.030155409..) = 2.879378365.. 17 (SIN[30])/ 2.879378365.. = 0.173648592.. 18 (0.173648592..)^2=0.030153834.. 19 3-4(0.030153834.. ) = 2.879384666.. 20 (SIN[30])/ 2.879384666.. = 0.173648212.. 21 [0.173648212..]^2 = 0.030153702.. 22 3-4[0.030153702..] =2.879385193.. 23 (SIN[30])/ 2.879385193.. = 0.173648181.. 24 [0.173648181..]^2 = 0.030153691.. 25 3-4[0.030153691..] = 2.879385238.. 26 (SIN[30])/ 2.879385238..= 0.173648178.. 27 [0.173648178..]^2 = 0.03015369.. 28 3-4[0.03015369..] = 2.879385241.. 29 (SIN[30])/ 2.879385241.. =0.173648178.. 30 ArcSin [0.173648178..] = 10 DEG
SIN[THETA/3]= [0.173648178..]
[THETA/3]= 10 DEG
For the ruler and compass Geometrical Solution , and for 0 <angle theta <45
1 DRAW ANGLE ,UNIT HYPOTENUSE, 2 FIND SINE MAGNITUDE ---------------------[A] 3 DOUBLE ANGLE ,FIND COSINE MAGNITUDE [FOR HYPOTENUSE ALSO UNITY]. SUBTRACT IT FROM UNITY ,AND TAKE HALF.TAKE FOUR TIMES THIS HALF AND SUBTRACT THE RESULT FROM 3 UNITS.---[B] 4 WITHIN ORIGINAL ANGLE DRAW A NEW ORTHOGONAL TRIANGLE WITH [B] AS COSINE AND [A] AS SINE .THE NEW ANGLE WILL BE THE TANGENT OF THIS TRIANGLE AND THIS WILL BE ITS FIRST APPROXIMATION.
ALL ABOVE WILL BE REPEATED FOR THE NEW , GRAPHICALLY FOUND, ANGLE , FIND NEW VALUE FOR [B] CALL IT [C] AND FIND NEW ANGLE AS ARCTANGENT{[A]/[C]) AND CONTINUE UNTILL SATURATION OF THE PROCESS.
**** [ ADDENDUM An other interesting solution which I, circulated in handouts , to colleagues of mine ,in 1993, is:
Assume angle akl. Draw isosceles triangle akl ,with ak=kl. With ak as radius draw arc al ,and then bisect it into two equal angles ae , and el . Then continue BISECTING BISECTIONS . to total four , and eight equal angles. Let arc al be ,as such , divided into eight eight equal arcs: ab , bc , cd , de , ef , fg , gh , and hl.
The first approximation of trisecting akl , is obtained by adding akb to bkc ,dke to ekf ,and gkh to hkl. Angle ckd is divided into four equal angles two of which are addet to angle akc , one to dkf leaving one more for further divisions by four. Similarly angle fkg is divided into four equal angles, two of which are added to angle gkl ,one to fkd, leaving one more for further divisions by four. And so on untill saturation of the process. It is realized that the continuous process is : [1/4]^1+[1/4]^2 + [1/4]+^3+..+..[1/4]^n = [1/3] which gives the trisection approximation . ]
[ SECOND ADDENDUM
TRISECTION OF THETA AS LOGARITHMIC [TRIG/ e ] FUNCTION
THETA/3 =Ln[B^60] [Ln is the Natural Logarithm base e] B=Tan{ArcSin[D]} D=SQRT[F] F=1/[G] G=[e^h]+1 h= -THETA/90 Where THETA is in degrees.
examplum gratias: for THETA=65 deg h=- 0.722222222.. G=0.485671785 +1=1.485671785.. F=1/1.485671785 = 0.673096178.. D=0.820424389.. B=1.434922888.. B^60 = 2568702300.. Ln[2568702300]=21.66666667.. THETA/3 = 21.66666667..
© Copyright Panagiotis C. Stefanides
Links
http://mathforum.org/kb/message.jspa?messageID=1072470&tstart=0
7 LinksA. LINKS to “ The Math Forum @ Drexel” Click on any of the following URLs to open and then introduce to the “Search All Discussions”window : PANAGIOTIS STEFANIDES . Then click on GO to find “Math Forum” discussions of PANAGIOTIS STEFANIDES . http://mathforum.org/kb/forum.jspa?forumID=13&start=405 http://mathforum.org/kb/forum.jspa?forumID=130 http://mathforum.org/kb/forum.jspa?forumID=149 http://mathforum.org/kb/forumcategory.jspa?categoryID=2
B.LINKS to the NATIONAL CURVE BANK Mathematics Department Team of the CALIFORNIA STATE UNIVERSITY , Los Angeles CA: http://curvebank.calstatela.edu/log/log.htm (Mathematical Curves-relating Spirals to Logarithms ) http://curvebank.calstatela.edu/home/home.htm (Recently Submitted Curves ) http://curvebank.calstatela.edu/greatlinks/greatlinks.htm ( Great Liks to Other Sites )
© Copyright Panagiotis C. Stefanides
Links
http://www.2dcurves.com/links.html
C.LINKS to the UNIVERSITY OF PORTO: - http://www.direito.up.pt/IJI/node/62 (VOL II/III)
http://www.stefanides.gr panamars@otenet.gr
|
© Copyright C. Stefanides. |